首页> 外文OA文献 >Kinetics of the hydrolysis of N-benzoyl-l-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses
【2h】

Kinetics of the hydrolysis of N-benzoyl-l-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses

机译:菠萝蛋白酶和木瓜蛋白酶催化的N-苯甲酰基-1-丝氨酸甲酯水解动力学。通过晶格线阵分析改性剂机理,底物活化催化剂的参数评估计算方法以及菠萝蛋白酶和木瓜蛋白酶催化水解中假定的非生产性结合的后果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

1. N-Benzoyl-l-serine methyl ester was synthesized and evaluated as a substrate for bromelain (EC 3.4.22.4) and for papain (EC 3.4.22.2). 2. For the bromelain-catalysed hydrolysis at pH7.0, plots of [S0]/vi (initial substrate concn./initial velocity) versus [S0] are markedly curved, concave downwards. 3. Analysis by lattice nomography of a modifier kinetic mechanism in which the modifier is substrate reveals that concave-down [S0]/vi versus [S0] plots can arise when the ratio of the rate constants that characterize the breakdown of the binary (ES) and ternary (SES) complexes is either less than or greater than 1. In the latter case, there are severe restrictions on the values that may be taken by the ratio of the dissociation constants of the productive and non-productive binary complexes. 4. Concave-down [S0]/vi versus [S0] plots cannot arise from compulsory substrate activation. 5. Computational methods, based on function minimization, for determination of the apparent parameters that characterize a non-compulsory substrate-activated catalysis are described. 6. In an attempt to interpret the catalysis by bromelain of the hydrolysis of N-benzoyl-l-serine methyl ester in terms of substrate activation, the general substrate-activation model was simplified to one in which only one binary ES complex (that which gives rise directly to products) can form. 7. In terms of this model, the bromelain-catalysed hydrolysis of N-benzoyl-l-serine methyl ester at pH7.0, I=0.1 and 25°C is characterized by Km1 (the dissociation constant of ES)=1.22±0.73mm, k (the rate constant for the breakdown of ES to E+products, P)=1.57×10−2±0.32×10−2s−1, Ka2 (the dissociation constant that characterizes the breakdown of SES to ES and S)=0.38±0.06m, and k′ (the rate constant for the breakdown of SES to E+P+S)=0.45±0.04s−1. 8. These parameters are compared with those in the literature that characterize the bromelain-catalysed hydrolysis of α-N-benzoyl-l-arginine ethyl ester and of α-N-benzoyl-l-arginine amide; Km1 and k for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine amide hydrolysis and Kas and k′ for the serine ester hydrolysis are somewhat similar to Km and kcat. for the arginine ester hydrolysis. 9. A previous interpretation of the inter-relationships of the values of kcat. and Km for the bromelain-catalysed hydrolysis of the arginine ester and amide substrates is discussed critically and an alternative interpretation involving substantial non-productive binding of the arginine amide substrate to bromelain is suggested. 10. The parameters for the bromelain-catalysed hydrolysis of the serine ester substrate are tentatively interpreted in terms of non-productive binding in the binary complex and a decrease of this type of binding by ternary complex-formation. 11. The Michaelis parameters for the papain-catalysed hydrolysis of the serine ester substrate (Km=52±4mm, kcat.=2.80±0.1s−1 at pH7.0, I=0.1, 25.0°C) are similar to those for the papain-catalysed hydrolysis of methyl hippurate. 12. Urea and guanidine hydrochloride at concentrations of 1m have only small effects on the kinetic parameters for the hydrolysis of the serine ester substrate catalysed by bromelain and by papain.
机译:1.合成了N-苄基-1-丝氨酸甲酯,并将其评估为菠萝蛋白酶(EC 3.4.22.4)和木瓜蛋白酶(EC 3.4.22.2)的底物。 2.对于在pH7.0的菠萝蛋白酶催化水解,[S0] / vi(初始底物浓度/初始速度)与[S0]的关系曲线明显弯曲,向下凹。 3.通过晶格线图分析,以改性剂为底物的改性剂动力学机理表明,当表征二元分解的速率常数之比(ES)时,会出现凹入式[S0] / vi与[S0]图)和三元(SES)配合物小于或大于1。在后一种情况下,生产和非生产二元配合物的解离常数之比可能会对值造成严格限制。 4.下凹的[S0] / vi与[S0]的图不能由强制性底物激活引起。 5.描述了基于功能最小化的计算方法,用于确定表征非强制性底物活化的催化的表观参数。 6.为了从底物活化的角度解释菠萝蛋白酶对N-苯甲酰基-1-丝氨酸甲酯水解的催化作用,将一般的底物活化模型简化为仅一种二元ES络合物(直接产生产品)可以形成。 7.根据该模型,菠萝蛋白酶催化的N-苯甲酰基-1-丝氨酸甲酯在pH7.0,I = 0.1和25°C下的水解特征为Km1(ES的解离常数)= 1.22±0.73 mm,k(ES分解为E +产物的速率常数,P)= 1.57×10-2±0.32×10-2s-1,Ka2(表征SES分解为ES和S的解离常数) = 0.38±0.06m,k′(SES分解为E + P + S的速率常数)= 0.45±0.04s-1。 8.将这些参数与文献中表征菠萝蛋白酶催化的α-N-苯甲酰基-1-精氨酸乙酯和α-N-苯甲酰基-1-精氨酸酰胺水解的参数进行比较;用于丝氨酸酯水解的Km1和k有点类似于Km和kcat。精氨酸酰胺水解的Ks和丝氨酸酯水解的Kas和k'与Km和kcat有些相似。用于精氨酸酯的水解。 9.先前对kcat值之间的相互关系的解释。并严格讨论了菠萝蛋白酶催化精氨酸酯和酰胺底物水解的Km,并提出了另一种解释,其中涉及精氨酸酰胺底物与菠萝蛋白酶的基本非生产性结合。 10.用菠萝蛋白酶催化的丝氨酸酯底物水解的参数根据二元络合物中的非生产性结合和通过三元络合物形成的这种结合的减少而暂时地解释。 11.木瓜蛋白酶催化丝氨酸酯底物水解的米氏参数(Km = 52±4mm,kcat。= 2.80±0.1s-1在pH7.0,I = 0.1,25.0℃)类似于木瓜蛋白酶催化的马尿酸甲酯水解。 12.浓度为1m的尿素和盐酸胍对菠萝蛋白酶和木瓜蛋白酶催化的丝氨酸酯底物水解动力学参数的影响很小。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号